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The effects of residual stress on toughening of brittle polycrystalline materials, in the 
absence of microcracking, were investigated by considering the mode I stress intensity 
factor reduction at the tip of a stationary crack under combined applied and residual stress 
loading. Toughness enhancement associated with a number of model singular and 
non-singular residual stress fields was evaluated. The singular residual stress fields were 
used to model grain-sized thermal expansion anisotropy due to grain-orientation differences 
in a polycrystal. The numerical results indicate that residual stress can significantly toughen 
a stationary crack against initiation. For the same average value of residual stress, toughness 
enhancement due to singular residual stress fields is more substantial than that due to 
non-singular residual stress fields. Sample toughness enhancement results are presented 
for a single-phase polycrystal failing by intergranular fracture. 

1. Introduction 
It is well known that residual stress develops in some 
brittle polycrystalline materials as a consequence of 
grain-sized thermal expansion anisotropy. Release of 
residual stress with profuse microcracking serves to 
toughen the microcracked polycrystals, and this 
toughening mechanism has received much attention 
El-5]. However, residual stress is also believed to play 
a part in determining the fracture toughness of brittle 
polycrystals where profuse microcracking is "not ob- 
served. This work examined the effects of residual 
stress on toughening of brittle polycrystalline mater- 
ials in the absence of microcracking. Specifically, the 
study considered the mode I stress intensity factor 
reduction at the tip of a stationary crack under com- 
bined applied and residual stress loading. Toughness 
enhancement associated with a number of singular 
and non-singular periodic residual stress fields was 
examined. The singular residual stress fields were then 
used to model the (theoretically) singular stress 
distribution along grain boundaries of a polycrystal 
resulting from grain-sized thermal expansion anisot- 
ropy due to grain-orientation differences [6]. 
The stress intensity factor reduction results obtained 
from this study, though highly idealized, are believed 
to offer insights into the maximum amount of 
toughening achievable with residual stress in brittle 
polycrystals. 

2. Crack-tip stress intensity reduction 
A continuum approach was taken in this study in 
which a polycrystalline material is treated as being 
linear elastic, homogeneous and isotropic on a macro- 

scale. Attention is focused on the fracture problem in 
which a crack with length much larger than the aver- 
age grain size exists within the polycrystal. Consistent 
with the stated length-scale assumption, the fracture 
behaviour of this material is modelled by considering 
the asymptotic plane problem of an infinite solid with 
a semi-infinite crack along the negative x-axis, as 
shown in Fig. 1, where the semi-infinite crack is re- 
motely stressed consistent with the classic mode 
I crack-tip field of the form 

K OO 

(y~# = ~ 6=~(0) (1) 

where (r, 0) are planar polar coordinates. 
A periodic, self-equilibrating residual stress field 

representative of grain-sized thermal-expansion an- 
isotropy due to grain-orientation differences is as- 
sumed to exist within this polycrystal. This study is 
highly idealized in that the residual stress field is 
modelled to be one-dimensional in nature with a peri- 
od of length 2L. Over each period the residual stress 
distribution has the form 

cy(x) = cyof(x) 0 N x < 2L (2) 

where Cyo is a reference residual stress to be specified 
shortly. Zero average residual stress over each period 
of length 2L is guaranteed by requiring the residual 
stress field to obey the relation 

f ( x )  = - - f ( 2 L  - x) 0 <_ x < L (3) 

The residual stress field is aligned with the semi-infi- 
nite crack as shown in Fig. 2 such that, in the absence 
of external loads, a traction distribution, ~(x),  of the 
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Figure 1 Semi-infinite crack geometry. 

Figure 2 Schematic drawing of a square wave residual stress distri- 
bution prior to the introduction of the semi-infinite crack. 

form in Equations 2 and 3 exists along the entire 
x-axis of the infinite body prior to the introduction of 
the semi-infinite crack. Location of the semi-infinite 
crack tip with respect to the periodicity of the residual 
stress field is denoted by the distance variable, t, where 
0 < t < 2 L .  

Using linear superposition, the mode I stress inten- 
sity factor, K t  at the semi-infinite crack tip under com- 
bined applied and residual stress loading takes the form 

K t = K ~ @ K r (4) 

where Kr represents the stress intensity factor contri- 
bution due to the traction distribution, ~(x), in the 
material through which the crack has passed. From 
Equation 4 it is clear that shielding of the semi-infinite 
crack is possible only if the release of residual stress in 
the material, through which the crack has passed, 
results in a negative K r contribution to the crack tip. 
In this sense the effect of residual stress on toughening 
of a brittle polycrystal is a crack-wake phenomenon. 
From dimensional considerations, K r has the form 
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where g(t/L) represents the variation of Kr as a func- 
tion of the normalized crack-tip location, t/L, and the 
residual stress distribution, f(x).  With reference to 
Fig. 2, the function g(t/L) takes the form [7] 

9 ( L ) = ( 2 ~ 1 / 2 ~ t  ~/Lf[l+u-(t/L)]\~/~do ~17g du 

+ [u + (t/L)] 1/2 du (6) 

Toughness enhancement is associated with the range 
of crack-tip locations for which the function g(t/L) is 
negative, and maximum toughening occurs when 
g(t/L) reaches a minimum. Because the residual stress 
distribution expressed in Equation 2 is periodic over 
a distance of length 2L, determination of Kr as a func- 
tion of crack-tip position can be limited to the range 
0 < t/L < 2. The case of t/L = 0 corresponds to the 
geometry where the tip of the semi-infinite crack is 
about to enter a region under residual tension. 

Introduce the toughening ratio, A, by rewriting 
Equation 4 such that 

K ~ CYo L 1/2 
A - - -  - 1 - -  9(t/L) (7) 

K t  K t  

where A is the ratio of the magnitude of the applied 
stress intensity factor, K ~, to the crack-tip stress 
intensity factor,/(t. In the following section, toughness 
enhancement due to residual stress fields of various 
forms is examined, and the function g(t/L) associated 
with each residual stress field is determined. The 
toughening achievable with the various residual stress 
fields for a specific polycrystal can, in principle, be 
determined by evaluating the toughening ratio, A, 
with K t identified with the intrinsic toughness, Kin,  of 
the polycrystal. The function g(t/L) is referred to as the 
unit function in subsequent discussions, correspond- 
ing to the toughening contribution when the non- 
dimensional residual stress parameter, (~o L 1/2/Km, has 
the value of unity. 

3. Candidate residual stress fields 
The periodicity of the residual stress field in Equation 
2 corresponds to the minimum distance over which 
positive and negative residual stresses of a self-equilib- 
rating residual stress field cancel, and is of the order of 
a few grain diameters in polycrystals with random 
grain orientation. Expressed in terms of the nor- 
malized distance u = x/L, the spatial distribution 
function, f(u), in Equation 2 for the residual stress 
fields examined in this study, over the range 0 _< u _< 1, 
are shown in Fig. 3 and have the following explicit 
forms 

sine wave 

7~ 
f(u) = ~ sin(rcu) (8a) 

square wave 

f (u)  = 1 (8b) 
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Figure 3 Schematic drawings of the various residual stress fields 
over one-half period: (a) sine wave, (b) square wave, (c) algebraically 
singular, (d) logarithmically singular. Explicit equations for these 
residual stress fields can be found in Equations 8a~e in the text. 

algebraically singular 

f(u) = 7 
[ 1  - ( 2 u  - 1 ) ]  ~ 

logarithmically singular 

(8d) 

f(u)=f(1-u) ({_<u_< 1) (8e) 

A=0.560, B =  -0.478, f o r q = 2 1 / 2  , 

A = - 0.264, B = - 0.396, for q = 1/21/2 

The sine wave in Fig. 3a is used to model a smooth- 
ly varying residual stress field. In Fig. 3b the square 
wave is used to model a discontinuous but finite- 
valued residual stress field. A general singular residual 
stress field is modelled using an algebraically singular 
field as shown in Fig. 3c. The parameter, e, in Equa- 
tion 8c can be adjusted to model varying degrees of 
singularity, while the parameter, 7, is used to facilitate 
comparison of results based on different values of the 
parameter, e, in a manner soon to be apparent. 
Finally, two logarithmically singular residual stress 
fields characterized by an elastic anisotropy factor, q, 
are shown in Fig. 3d. These two logarithmically singu- 
lar fields are of particular interest because they repres- 
ent a wide range of elastic anisotropy mismatches 
within individual grains in polycrystalline ceramics 
[6]. Tvergaard and Hutchinson's analysis [6] was 
performed for an idealized hexagonal polycrystal, and 
details concerning the elastic anisotropy factor, q, can 
be found in that work. The empirical constants A and 
B are found from curve-fitting the results in [6] to the 
form shown in Equations 8d and e. The periodicity of 
the logarithmically singular residual stress fields in [6] 

is three facet lengths of the hexagonal grains, and is 
identified with 2L in this study. 

Comparison of crack-shielding capability of the 
various residual stress fields, based on equal values of 
the average residual stress over each half-period, is 
accomplished by requiring the residual stress fields to 
obey the relation 

fjf(u) = (9) du 1 

The reference residual stress value, ~0, in Equation 
2 thus corresponds to the magnitude of the average 
residual stress experienced in each half-period. Equa- 
tion 9 is satisfied by the non-singular sine and square 
wave residual stress fields shown in Equations 8a and 
b. For the algebraically singular residual stress fields 
the parameter pair (7, ~) are chosen such that Equa- 
tion 9 is also satisfied. On the other hand, curve-fitting 
of the results in [6] to the logarithmically singular 
form in Equations 8d and e for the two cases of elastic 
anisotropy in Equation 8 results in relations of the 
form 

fif(u)du = rl = (10a) 0.4 for 21/2 

f(u)du = 0.55 for q = 21/2 (10b) 

In presenting toughness enhancement results in the 
next section, the logarithmically singular results will 
be shown for values of the integral expression in- 
dicated in Equations 10a and b, and for values of the 
integral expression equal to unity so that comparison 
with other residual stress field results can be made. 

Determination of the numerical accuracy in evalu- 
ating the unit-function 9(t/L) in Equation 6 is facilit- 
ated by the following two check cases. For the sine 
wave residual stress field, 9(t/L) can be evaluated in 
closed-form such that 

g ( L )  = ~--~l/z Ic~ (~ L )  -- sin (~z L ) I  (11) 

For the case where the singularity parameter, ~, of the 
algebraically singular residual stress field approaches 
zero, the toughness enhancement results based on 
Equation 9 should coincide with the square wave 
residual stress field results. 

4. Toughness enhancement 
and inferences 

The unit-function, g(t/L), associated with the various 
residual stress fields defined in Equations 8a-e are 
shown in Figs 4-7 as a function of the relative loca- 
tion, t/L, of the tip of the semi-infinite crack with 
respect to the periodicity of the residual stress field. In 
interpreting the results in these figures, note that nega- 
tive values of the unit-function, 9(t/L), is associated 
with shielding of the semi-infinite crack under mode 
I loading, whereas positive values ofo(t/L) implies the 
residual stress field actually reduces the maximum 
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Figure 4 The sine wave unit-function as a function of crack-tip 
location. 
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Figure 5 The 
location. 
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Figure 6 The algebraically singular unit-function as a function of 
crack-tip location: (a) for low values of the singularity parameter, a, 
(b) for high values of the singularity parameter, a. 

load the cracked system can sustain. Figs 4 and 5 show 
the results for the two non-singular residual stress 
fields. The results for the algebraically singular fields 
are presented in Fig. 6 via two plots to highlight better 
the influence of the singularity parameter, a, on tough- 
ness enhancement. The logarithmically singular fields 
results are presented in Fig. 7, where the dashed-line 
curve corresponds to value of the elastic anisotropy 
factor q = 1/21/2, while the solid-line curve corres- 
ponds to q = 21/2. 

The most significant features of the results present- 
ed in Figs 4-7 are the minimum values of g(t/L) and 
where they occur. In Table I the minimum values, 
gm(t/L) , and the corresponding locations, (t/L)m, for 
the various residual stress fields are listed. In addition, 
values of gin(t/L) are listed for the logarithmically 
singular residual stress fields specified by Equations 
10a and b. With the exception of the sine wave resid- 
ual stress field, maximum toughening of the semi-infi- 
nite crack occurs when the crack is at the verge of 
entering a residually tensile region corresponding to 
(t/L)m = 0. This general trend, while counter-intuitive, 
follows from the observation that maximum toughen- 
ing corresponds to weighting of the integral in Equa- 
tion 6 in a manner which favours the presence of 

3 - 

- q = 21/2 
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Figure 7 The logarithmically singular unit-function as a function of 
crack-tip location for two cases of the elastic anisotropy factor, rl. 

residual compressive stress adjacent to the crack tip in 
the crack-wake region. Deviation of the location of 
maximum toughening, (t/L)m, for the sine wave resid- 
ual stress field from the current trend is due to the fact 
that the minimum value of the sine wave function does 
not occur at the tension-compression cross-over point 
of the sine wave function. 
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T A B L E  I M i n i m u m  v a l u e s  o f  t h e  u n i t  f u n c t i o n  9(t/L) a n d  the  

c o r r e s p o n d i n g  c r a c k - t i p  l o c a t i o n ,  t/L 

R e s i d u a l  s t r e s s  (t/L)m gm(t/g) 

Sine  1.75 - 1.25 

S q u a r e  0 - 1 .20 

A l g e b r a i c a l l y  s = - 0 .01  0 - 1 .20 

s i n g u l a r  ~ = - 0.1 0 - 1 .32  

= - -  0.2  0 - -  1.52 

= - -  0 .3  0 - -  1 .94 

= - -  0 .4  0 - -  3 .2  

= - -  0 .45  0 - -  5 .7  

L o g a r i t h m i c a l l y  T 1 = 21/2 0 - 2 .45"  - 0 .98  b 

s i n g u l a r  T1 = 1/21/2 0 - 1.85" - 0 .98  ~ 

a B a s e d  o n  E q u a t i o n  9. 

b B a s e d  o n  E q u a t i o n s  1 0 a  a n d  b. 

Evidently, the sine and square wave residual stress 
fields are equally effective in shielding the semi-infinite 
crack from the applied load, with maximum toughen- 
ing corresponding to values of the unit-function, 
9m(t/L), in the range 1.2 _< gin(t/L) <- 1.25. The alge- 
braically singular fields provide a greater degree of 
toughening than the non-singular fields, even for rela- 
tively low values of the singularity parameter s. For 
value of the singularity parameter ~ _< -0.01 the 
square wave residual stress field results are recovered. 
Minimum values of the unit-function, gin(t/L), for the 
logarithmically singular residual stress fields are ap- 
proximately 1.6-2.1 times higher than the correspond- 
ing non-singular residual stress field values. 

Toughness enhancement associated with a residual 
stress field, for a given value of the average residual 
stress, Cyo, is thus seen to depend strongly on the 
spatial variation function, f ( u ) ,  of the residual stress 
field. Among the family of residual stress fields con- 
sidered in Equations 8a-e, the singular residual stress 
fields may, in fact, be the more realistic representations 
of the residual stress distribution within brittle poly- 
crystalline materials [6]. Evidently, these singular 
fields provide a much greater degree of toughening 
than non-singular fields under equivalent value of Go. 
Comparing the results for the two cases of logarithmi- 
cally singular residual stress that represent a wide 
range of grain-sized elastic anisotropy mismatches, 
deviation from elastic isotropy (~1 = 1) over the stated 
range of ~1 values results in an approximate 14% 
difference in the minimum value of the unit-function 
gin(t/L) . To the degree that the two cases of elastic 
anisotropy assumed in this study cover a reasonable 
range of actual material property, toughness enhance- 
ment due to residual stress is seen to depend weakly 
on the degree of elastic anisotropy within individual 
grains of a polycrystalline material. 

Evaluation of the toughening ratio, A, in Equation 
7 that is achievable with the various residual stress 
fields for a specific polycrystal requires knowledge of 
the average value of the residual stress, C~o, the distri- 
bution function, f (x), length of the average periodic- 
ity, 2L, and the intrinsic toughness, Kin, of the poly- 
crystal. Sample results for toughness enhancement 
achievable for a single-phase polycrystal is estimated 

in the next section under the assumption of inter- 
granular fracture. It is believed that these results 
provide a reference estimate of the toughening 
achievable in polycrystalline ceramics due to 
residual stress effects in the absence of microcracking. 

5. Sample results for a single-phase 
polycrystal 

The residual stress field in the polycrystal is modelled 
by the logarithmically singular residual stress fields 
in Equations 8a-e. The residual stress field periodic- 
ity of length 2L is now identified with twice the 
average grain diameter of the polycrystal, consistent 
with both the periodicity assumed by Tvergaard and 
Hutchinson [6] and with the assumption that zero 
average residual stress occurs over a relatively small 
area. The reference residual stress, cyo, is evaluated 
assuming 

Go = EAo~AT (12) 

with Young's modulus E = 400x 1 0 9  Nm -2, differ- 
ence between maximum and minimum thermal expan- 
sion coefficients Ao)= 7.4 x 10 -7 and difference be- 
tween processing temperature and room temperature 
being AT = 1500~ [8]. Let G m -= 2 Jm -2 be the 
critical energy release rate associated with the grain 
boundary between individual grains and v = 0.2 be 
the corresponding value of the Poisson's ratio. The 
intrinsic toughness of the grain boundary is then ap- 
proximately Km= 0.91 MPam ~/2. Note that both of 
the logarithmically singular residual stress fields con- 
sidered in Equations 8d and e result in minimum value 
of the unit-function 9m(t/L) ~ - 1. Substitution of the 
above values into Equation 12 with 9m(0) = -- 1 yields 
minimum values of the stress intensity factor contribu- 
tion due to residual stress effects. These minimum 
values range from Kr/Km = -0 .34 for a very fine 
grain polycrystal with a mean grain size of 0.5 gm to 
Kr/K m = - -  2.17 for a polycrystal with a mean grain 
size of 20 pm. Corresponding to these values of K~/Km 
are values of maximum toughening ratio that range 
from (A) m = 1.34 to (A) m = 3.17. The assumption of 
a different number of grains within each residual stress 
period of length 2L can be readily incorporated into 
the toughness calculation presented above through 
Equation 7. 

Comparison with experimental data ]-8-11] indi- 
cate that the predicted maximum toughness values, 
although the outcome of a highly idealized model, are 
within the range of reported values for some ceramic 
systems. However, there is experimental evidence 
E8-10] that, in addition to residual stress effects 
of the type considered in this study, crack bridging by 
uncracked grains and grain-interlocking effects 
also serve as toughening mechanisms in polycrystal- 
line ceramics. Nonetheless, the above estimate 
of toughness enhancement demonstrates the poten- 
tial for substantial toughening in polycrystalline 
ceramics due to residual stress effects in the absence of 
microcracking. 
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